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TOPIC SYNOPSIS

INTRODUCTION: When a function 𝑓(𝑥) is integrated with respect to x between the limits
𝐛

a and b, we get the double integral ∫𝐚

𝐟(𝐱)𝐝𝐱 .If the integrand is a function 𝑓 (𝑥,𝑦) and
if

it is integrated with respect to x and y repeatedly between the limits 𝒙𝟎 and 𝒙𝟏 (for x ) and

between the limits 𝐲𝟎 and 𝐲𝟏 (for y ) we get a double integral that is denoted by the

symbol ∫𝐲𝟏∫𝐱𝟏 𝐟(𝐱, 𝐲)𝐝𝐱𝐝𝐲.Extending the concept of double integral one step further, we
𝐲𝟎 𝐱𝟎

get the triple integral, denoted by ∫𝐳𝟏 𝒚𝟏∫𝐱𝟏 𝐟(𝐱, 𝐲, 𝐳) 𝐝𝐱𝐝𝐲𝐝𝐳.
𝐳𝟎 ∫𝐲𝟎 𝐱𝟎

EVALUATION OF DOUBLE
AND TRIPLE INTEGRALS: To
evaluate

∫𝐲𝟏
𝐲𝟎

∫𝐱𝟏 𝐟(𝐱, 𝐲)𝐝𝐱𝐝𝐲 first
𝐱𝟎

integrate 𝑓(x,y) with respect to x partially, treating y as constant temporarily, between

the limits 𝒙𝟎 and 𝒙𝟏. Then integrate the resulting function of y with respect to y between

the limits 𝐲𝟎 and 𝐲𝟏 as usual.

In notation ∫𝐲𝟏 [
𝐲𝟎

∫𝐱𝟏 𝐟(𝐱, 𝐲)𝐝𝐱] 𝐝𝐲 ( for double

integral)
𝐱𝟎

∫𝐳𝟏 {
𝐳𝟎

∫𝐲𝟏 [
𝐲𝟎

∫𝐱𝟏 𝐟(𝐱, 𝐲)𝐝𝐱] 𝐝𝐲} 𝐝𝐳 ( for triple

integral).
𝐱𝟎

NOTE: Integral with variable limits should be the innermost integral and it should be

integrated first and then the constant limits.

REGION OF
INTEGRATION:
Consider the double
integral

𝐝
∫𝐜

𝛟𝟐(𝐲) 𝐟(𝐱, 𝐲)𝐝𝐱𝐝𝐲,
𝟏

𝑥 varies from 𝛟𝟏(𝐲) 𝑡𝑜 𝛟𝟐(𝐲) and 𝑦 varies from 𝑐 𝑡𝑜 𝑑. (i.e) 𝛟𝟏(𝐲) ≤ 𝑥 ≤ 𝛟𝟐(𝐲) and 𝑐
≤ 𝑦 ≤ 𝑑. These inequalities determine a region in the 𝑥𝑦−𝑝𝑙𝑎𝑛𝑒, which is shown in the

following diagram. This region ABCD is known as the region of integration



CASE-I : Double integral∬ 𝐟(𝐱, 𝐲)𝐝𝐒 = ∫𝐱=𝐛∫𝐲=𝐠𝟐(𝐱) 𝐟(𝐱, 𝐲)𝐝𝐱𝐝𝐲,
𝐒 𝐱=𝐚 𝐲= 𝐠𝟏(𝐱)

𝑥 varies from a to b and 𝑦 varies from 𝐠𝟏(𝐱) 𝑡𝑜 𝐠𝟐(𝐱).

CASE-II : Double integral∬ 𝐟(𝐱, 𝐲)𝐝𝐒 = ∫𝐲=𝐝∫𝐱=𝐡𝟐(𝐲) 𝐟(𝐱, 𝐲)𝐝𝐱𝐝𝐲,
𝐒 𝐲=𝐜 𝐱= 𝐡𝟏(𝐲)

𝑥 varies from 𝐡𝟏(𝐲) 𝑡𝑜 𝐡𝟐(𝐲) and 𝑦 varies from 𝑐 𝑡𝑜 𝑑.
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