GOVERNMENT DEGREECOLLEGE(MEN) SRIKAKULAM

(NAAC Accredited with 'B++' Grade (2.98 CGPA) (Affiliated to Dr. B. R. Ambedkar University, Srikakulam)

DEPARTMENT OF MATHEMATICS

REPORT ON INVITED LECTURE "INTEGRAL TRANSFORMATIONS"

UNDER COLLABORATIVE ACTIVITY

BY

RONANKI.RAVISANKAR,

LECTURER IN MATHEMATICS

GOVERNMENT DEGREE COLLEGE, TEKKALI

MODE OF TALK: ONLINE MODE THROUGH GOOGLE MEET.

DATE: 05.12.2020

TIME: 2.30 PM to 5 PM.

TOPIC : " INTEGRAL TRANSFORMATIONS " VENUE: GOVERNMENT DEGREE COLLEGE, MEN

No.of Students attended = 30 No.of Teaching Staff attended = 05

GOOGLE MEET LINK

GUEST LECTURE ON "INTEGRAL TRANSFORMATIONS"

Tuesday, December 5 · 2:30 – 4:30pm Time zone: Asia/Kolkata Google Meet joining info Video call link:

https://meet.google.com/vss-ycpu-kni

OI 6-9 @ Share C. M. V.T. - J. & : [4,6] - 1 R tax & g (2) defined on [a, b] (i) fai) a g (n) are continuing on [4,5] (ii) for a da de di Augustalle de (9, 5) 3 (iii) g(x) = + x + (a, b) the ∃ (6 (9, b) ∋ f(c) = f(s) - f(a) 9 (w) 9 (b) - 8 (a) Pt= define $\varphi(x) = f(x) + kg(x)$ Here \$ (2): Ca16J-8 R and it defined by \$(4)=\$(6) d(a) = f(a) + kg(a)& (6) = +(b) + 1(g (b) a = T & B & - f(b) + kg(b)Q Q Search 211: 🧌 🗉 🙋 🖸 💕 🖬 ∧ ♠ ENG ♥ ₫0 ₽ 2121

3:40 🖬 📽 🗭	≫ LTE1 ++ .1 .1	45% 着
15:40 × java UNIT I.doc		
Int Short Long	A 32-bit (4-byte) integer A 16-bit (2-byte) integer A 64-bit (8-byte) integer	value value value
Byte Float	An 8-bit (1-byte) integer A 32-bit (4-byte) floating	value g-point va
Char Boolean	A 16-bit character using t A true or false value	the U co
x (16)		>
	Polaki Praveen Kumar (You)
()	guna jagadesh	>
	Siva Prasad	>

Bhagya Sri Uppada >

Others in the meeting (12)

2

10

DEEPIKARANI	n	>
DUCENDUCIUM	VL	

m m ··· 1

3:47 🖬 🖸 📽 🔹

* LTE1 + 449%

& (16)		i
S	Dupana Poojitha	>
G	Gowtham Jami	>
G	Guntuku Premsai	>
H 🕲	Hari Shankar. CH	>
S	Prudhvi Polaki	>
S	Rahul Rocky	>
S	Santhoshi kumari Ponnana	>

TOPIC SYNOPSIS

INTRODUCTION: When a function f(x) is integrated with respect to x between the limits **b** f(x)dx. If the integrand is a function f(x,y) and a and b, we get the double integral \int_{a} if

it is integrated with respect to x and y repeatedly between the limits x_0 and x_1 (for x) and between the limits y₀ and y₁ (for y) we get a double integral that is denoted by the symbol $\int^{y_1} \int^{x_1} f(x, y) dx dy$. Extending the concept of double integral one step further, we get the triple integral, denoted by $\int^{z_1} y_1 \int^{x_1} f(x, y, z) dx dy dz$. $z_0 \int v_0$ $\int^{x_1} f(x, y) dx dy$ first ∫<u>v</u>1 **EVALUATION OF DOUBLE**

AND TRIPLE INTEGRALS: To evaluate

x0

integrate f(x,y) with respect to x partially, treating y as constant temporarily, between the limits x_0 and x_1 . Then integrate the resulting function of y with respect to y between the limits \mathbf{y}_0 and \mathbf{y}_1 as usual.

In notation	∫ ^y 1[$\int^{x_1} f(x, y) dx dy$ (for double			
	y0	integral)			
∫ ^{Z1} {	∫ ^{y1} [$\int_{x_1}^{x_0} f(x, y) dx dy$ dz (for triple			
z0	y0	integral).			
		x0			

NOTE: Integral with variable limits should be the innermost integral and it should be integrated first and then the constant limits.

 $\phi_{2}(y) f(x, y) dx dy,$ ∫c **REGION OF INTEGRATION: Consider the double** integral

x varies from $\phi_1(y)$ to $\phi_2(y)$ and y varies from c to d. (i.e) $\phi_1(y) \le x \le \phi_2(y)$ and С $\leq y \leq d$. These inequalities determine a region in the *xy*-*plane*, which is shown in the following diagram. This region **ABCD** is known as the region of integration

CASE-I : Double integral $\iint f(x, y)dS = \int^{x=b} \int^{y=g_2(x)} f(x, y)dxdy$, s $x=a \quad y=g_1(x)$

x varies from a to b and y varies from $g_1(x)$ to $g_2(x)$. CASE-II : Double integral $\iint f(x, y)dS = \int^{y=d} \int^{x=h_2(y)} f(x, y)dxdy$, S y=c $x=h_1(y)$

x varies from $h_1(y)$ to $h_2(y)$ and y varies from c to d.

JAMBOARD LINK

https://jamboard.google.com/d/11t038JYRoWFSmDaM89 kYA8D5qHvy90FNAnLO26xMilw/edit?usp=sharing

roof of Green's Theor

E there & S	Multipletotegastupell	X + Create		0	0 0	. –		×
All tools Edit O	envert Sign		Find text or tools Q	.00	ø	0	e d	, 8
								9
		PROBLEMS FOR P	RACTICE					R
2 2 0 8		Evaluate the following $\int_{-1}^{2} \int_{-1}^{1} 4xy dx dy$	Ans: 4					-
a,		1. J ₀ J ₀ thy analy	Alls, 4					1
		$2. \int_1^b \int_1^a \frac{1}{xy} dx dy$	Ans: loga.logb					
		$3. \int_0^1 \int_0^x dx dy$	Ans: 1/2					
		$\int_{-\infty}^{\pi} \int_{-\infty}^{\sin\theta} r dr d\theta$	Ane: #/A					5
		$\mathbf{J}_0 \mathbf{J}_0 \mathbf{J}_0$	Ans. 104					
		$5 \int_{1}^{1} \int_{1}^{2} \int_{1}^{3} xyz dy dy dz$	Ans: 9/2					~
		J. J ₀ J ₀ J ₀ XyZuXuYuZ	7415, 5/2					C
		$6 \int_{1}^{1} \int_{1}^{2} \int_{1}^{y+z} dz dy dx$	Ans: 1/4					Θ,
		$J_0 J_0 J_0$						6
					NG		478	-
	Q Search		🗖 🕂 9 📾 🛍 🕐 🖬 🔵 🗑 🙀 🗸	2.	N 9	P (0) 58	12/5/2	123

